数码控科技猎奇Iphone动漫星座游戏电竞lolcosplay王者荣耀攻略allcnewsBLOGNEWSBLOGASKBLOGBLOGZSK全部技术问答问答技术问答it问答代码软件新闻开发博客电脑/网络手机/数码笔记本电脑互联网操作系统软件硬件亚洲最佳在线娱乐平台开发360产品资源分享电脑知识文档中心IT全部全部分类全部分类技术牛文全部分类教程最新网页制作cms教程平面设计媒体动画操作系统网站运营网络安全服务器教程亚洲最佳在线娱乐平台工具网络安全软件教学vbscript正则表达式javascript批处理更多»亚洲最佳在线娱乐平台更新教程更新游戏更新allitnewsJava新闻网络医疗信息化安全创业站长电商科技访谈域名会议专栏创业动态融资创投创业学院 / 产品经理创业公司人物访谈营销开发亚洲最佳在线娱乐平台服务器系统虚拟化云计算嵌入式移动开发作业作业1常见软件all电脑网络手机数码生活游戏体育运动明星影音休闲爱好文化艺术社会民生教育科学医疗健康金融管理情感社交地区其他电脑互联网软件硬件亚洲最佳在线娱乐平台开发360相关产品手机平板其他电子产品摄影器材360硬件通讯智能设备购物时尚生活常识美容塑身服装服饰出行旅游交通汽车购房置业家居装修美食烹饪单机电脑游戏网页游戏电视游戏桌游棋牌游戏手机游戏小游戏掌机游戏客户端游戏集体游戏其他游戏体育赛事篮球足球其他运动球类运动赛车健身运动运动用品影视娱乐人物音乐动漫摄影摄像收藏宠物幽默搞笑起名花鸟鱼虫茶艺彩票星座占卜书画美术舞蹈小说图书器乐声乐小品相声戏剧戏曲手工艺品历史话题时事政治就业职场军事国防节日风俗法律法规宗教礼仪礼节自然灾害360维权社会人物升学入学人文社科外语资格考试公务员留学出国家庭教育学习方法语文物理生物工程学农业数学化学健康知识心理健康孕育早教内科外科妇产科儿科皮肤科五官科男科整形中医药品传染科其他疾病医院两性肿瘤科创业投资企业管理财务税务银行股票金融理财基金债券保险贸易商务文书国民经济爱情婚姻家庭烦恼北京上海重庆天津黑龙江吉林辽宁河北内蒙古山西陕西宁夏甘肃青海新疆西藏四川贵州云南河南湖北湖南山东江苏浙江安徽江西福建广东广西海南香港澳门台湾海外地区

365bet官网上全狐网365账号锁怎么解锁

来源:乐虎lehu国际娱乐之家  责任编辑:小易  

人工神经网络的许多算法已在智能信息处理系统中获得广泛采用,尤为突出是是以下4种算法:ART网络、LVQ网络、Kohonen网络Hopfield网络,下面就具体介绍一下这这四种算法:

1.自适应谐振理论(ART)网络

自适应谐振理论(ART)网络具有不同的方案。一个ART-1网络含有两层一个输入层和一个输出层。这两层完全互连,该连接沿着正向(自底向上)和反馈(自顶向下)两个方向进行。

当ART-1网络在工作时,其训练是连续进行的,且包括下列算法步骤:

(1)对于所有输出神经元,如果一个输出神经元的全部警戒权值均置为1,则称为独立神经元,因为它不被指定表示任何模式类型。

(2)给出一个新的输入模式x。

(3)使所有的输出神经元能够参加激发竞争。

(4)从竞争神经元中找到获胜的输出神经元,即这个神经元的x·W值为最大;在开始训练时或不存在更好的输出神经元时,优胜神经元可能是个独立神经元。

(5)检查该输入模式x是否与获胜神经元的警戒矢量V足够相似。

(6)如果r≥p,即存在谐振,则转向步骤(7);否则,使获胜神经元暂时无力进一步竞争,并转向步骤(4),重复这一过程直至不存在更多的有能力的神经元为止。

2.学习矢量量化(LVQ)网络

学习矢量量化(LVQ)网络,它由三层神经元组成,即输入转换层、隐含层和输出层。该网络在输入层与隐含层之间为完全连接,而在隐含层与输出层之间为部分连接,每个输出神经元与隐含神经元的不同组相连接。

最简单的LVQ训练步骤如下:

(1)预置参考矢量初始权值。

(2)供给网络一个训练输入模式。

(3)计算输人模式与每个参考矢量间的Euclidean距离。

(4)更新最接近输入模式的参考矢量(即获胜隐含神经元的参考矢量)的权值。如果获胜隐含神经元以输入模式一样的类属于连接至输出神经元的缓冲器,那么参考矢量应更接近输入模式。否则,参考矢量就离开输人模式。

(5)转至步骤(2),以某个新的训练输入模式重复本过程,直至全部训练模式被正确地分类或者满足某个终止准则为止。

3.Kohonen网络

Kohonen网络或自组织特征映射网络含有两层,一个输入缓冲层用于接收输入模式,另一个为输出层,输出层的神经元一般按正则二维阵列排列,每个输出神经元连接至所有输入神经元。连接权值形成与已知输出神经元相连的参考矢量的分量。

训练一个Kohonen网络包含下列步骤:

(1)对所有输出神经元的参考矢量预置小的随机初值。

(2)供给网络一个训练输入模式。

(3)确定获胜的输出神经元,即参考矢量最接近输入模式的神经元。参考矢量与输入矢量间的Euclidean距离通常被用作距离测量。

(4)更新获胜神经元的参考矢量及其近邻参考矢量。这些参考矢量(被引至)更接近输入矢量。对于获胜参考矢量,其调整是最大的,而对于离得更远的神经元,减少调整个神经元邻域的大小随着训练的进行而相对减小,到训练结束,只有获胜神经元的参考矢量被调整。

4.Hopfield网络

Hopfield网络是一种典型的递归网络,这种网络通常只接受二进制输入(0或1)以及双极输入(+1或-1)。它含有一个单层神经元,每个神经元与所有其他神经元连接,形成递归结构。

您可能感兴趣的文章:


  • 本文相关:
  • python实现的nn神经网络算法完整示例
  • 神经网络(bp)算法python实现及应用
  • python实现简单神经网络算法
  • python实现的三层bp神经网络算法示例
  • python亚洲最佳在线娱乐平台实现的简单神经网络算法示例
  • python实现神经网络感知器算法
  • python基于动态规划算法计算单词距离
  • python学习之第三方包安装方法(两种方法)
  • python 输入一个数n,求n个数求乘或求和的实例
  • 对python中return和print的一些理解
  • 通过pykafka接收kafka消息队列的方法
  • python opencv判断图像是否为空的实例
  • python多进程库multiprocessing中进程池pool类的使用详解
  • python探索之静态方法和类方法的区别详解
  • 如何优雅地处理django中的favicon.ico图标详解
  • python idle 错误:idle''''s subprocess didn''''t make connec
  • 免责声明 - 关于我们 - 联系我们 - 广告联系 - 友情链接 - 帮助中心 - 频道导航
    Copyright © 2017 www.pradaoutletonline.net All Rights Reserved